This function generates a simulated dataset for inference based on a specified model and parameter values. It supports options for monthly aggregation, adjusting for unequal days in months, and adding stochastic noise to the incidence data.
Usage
data_sim_for_inference(
model,
param_inputs,
dates,
noise = FALSE,
month = FALSE,
month_unequal_days = FALSE
)
Arguments
- model
A compiled model object compatible with
data_sim()
. Typically created usingodin.dust::odin_dust()
.- param_inputs
A named list of parameter values required by the model.
- dates
A character vector of length two specifying the start and end dates (e.g.,
c("2022-01-01", "2022-12-31")
).- noise
Logical. If
TRUE
, random noise is added using a negative binomial distribution. Defaults toFALSE
.- month
Logical. If
TRUE
, the output is aggregated by month. Defaults toFALSE
.- month_unequal_days
Logical. If
TRUE
, accounts for unequal month lengths when aggregating. Defaults toFALSE
.
Value
A data frame of simulated incidence data, in the same format as the output of data_sim()
.
If noise = TRUE
, the inc
column will include added random variation.
Details
When
month = TRUE
, output is aggregated by month. Ifmonth_unequal_days = TRUE
, aggregation is adjusted to reflect actual month lengths.If
noise = TRUE
, the function adds variability to the incidence estimates using a negative binomial distribution with size = 100.
See also
data_sim
for the underlying simulation function.
Examples
# Example (requires a model created using odin.dust, not run here):
if (FALSE) { # \dontrun{
model <- odin.dust::odin_dust("path/to/model.R")
param_inputs <- list(beta = 0.3, gamma = 0.1)
dates <- c("2022-01-01", "2022-12-31")
# Simulate data without noise
sim_data <- data_sim_for_inference(model, param_inputs, dates, noise = FALSE)
# Simulate data with noise and monthly aggregation
sim_data_monthly <- data_sim_for_inference(model, param_inputs, dates,
noise = TRUE, month = TRUE)
} # }