Skip to contents

Computes population multipliers over time for under-5 (r_C) and over-5 (r_A) groups, using fixed daily exponential growth. Time steps can be monthly (30 days) or weekly (7 days).

Usage

get_population_scaling(
  n,
  month = TRUE,
  growth_rate_C = 1.026^(1/360),
  growth_rate_A = 1.026^(1/360),
  init_r_C = 1,
  init_r_A = 1
)

Arguments

n

Integer. Number of time points to generate (e.g. months or weeks).

month

Logical. If TRUE, use 30-day months; if FALSE, use 7-day weeks.

growth_rate_C

Daily growth rate for under-5 population. Default corresponds to 2.6% per year.

growth_rate_A

Daily growth rate for over-5 population. Default corresponds to 2.6% per year.

init_r_C

Initial multiplier for r_C (default = 1).

init_r_A

Initial multiplier for r_A (default = 1).

Value

A data frame with columns: timestep, r_C, r_A

Examples

# Monthly population growth over 60 months
get_population_scaling(n = 60, month = TRUE)
#>    timestep model_days      r_C      r_A
#> 1         1          0 1.000000 1.000000
#> 2         2         30 1.002141 1.002141
#> 3         3         60 1.004287 1.004287
#> 4         4         90 1.006438 1.006438
#> 5         5        120 1.008593 1.008593
#> 6         6        150 1.010752 1.010752
#> 7         7        180 1.012917 1.012917
#> 8         8        210 1.015086 1.015086
#> 9         9        240 1.017259 1.017259
#> 10       10        270 1.019437 1.019437
#> 11       11        300 1.021620 1.021620
#> 12       12        330 1.023808 1.023808
#> 13       13        360 1.026000 1.026000
#> 14       14        390 1.028197 1.028197
#> 15       15        420 1.030399 1.030399
#> 16       16        450 1.032605 1.032605
#> 17       17        480 1.034816 1.034816
#> 18       18        510 1.037032 1.037032
#> 19       19        540 1.039252 1.039252
#> 20       20        570 1.041478 1.041478
#> 21       21        600 1.043708 1.043708
#> 22       22        630 1.045943 1.045943
#> 23       23        660 1.048182 1.048182
#> 24       24        690 1.050427 1.050427
#> 25       25        720 1.052676 1.052676
#> 26       26        750 1.054930 1.054930
#> 27       27        780 1.057189 1.057189
#> 28       28        810 1.059453 1.059453
#> 29       29        840 1.061721 1.061721
#> 30       30        870 1.063995 1.063995
#> 31       31        900 1.066273 1.066273
#> 32       32        930 1.068556 1.068556
#> 33       33        960 1.070844 1.070844
#> 34       34        990 1.073137 1.073137
#> 35       35       1020 1.075435 1.075435
#> 36       36       1050 1.077738 1.077738
#> 37       37       1080 1.080046 1.080046
#> 38       38       1110 1.082358 1.082358
#> 39       39       1140 1.084676 1.084676
#> 40       40       1170 1.086998 1.086998
#> 41       41       1200 1.089326 1.089326
#> 42       42       1230 1.091659 1.091659
#> 43       43       1260 1.093996 1.093996
#> 44       44       1290 1.096339 1.096339
#> 45       45       1320 1.098686 1.098686
#> 46       46       1350 1.101039 1.101039
#> 47       47       1380 1.103396 1.103396
#> 48       48       1410 1.105759 1.105759
#> 49       49       1440 1.108127 1.108127
#> 50       50       1470 1.110500 1.110500
#> 51       51       1500 1.112877 1.112877
#> 52       52       1530 1.115260 1.115260
#> 53       53       1560 1.117648 1.117648
#> 54       54       1590 1.120042 1.120042
#> 55       55       1620 1.122440 1.122440
#> 56       56       1650 1.124843 1.124843
#> 57       57       1680 1.127252 1.127252
#> 58       58       1710 1.129666 1.129666
#> 59       59       1740 1.132085 1.132085
#> 60       60       1770 1.134509 1.134509

# Weekly population growth over 120 weeks with custom growth rates
get_population_scaling(n = 120, month = FALSE, growth_rate_C = 1.00005, growth_rate_A = 1.00003)
#>     timestep model_days      r_C      r_A
#> 1          1          0 1.000000 1.000000
#> 2          2          7 1.000350 1.000210
#> 3          3         14 1.000700 1.000420
#> 4          4         21 1.001051 1.000630
#> 5          5         28 1.001401 1.000840
#> 6          6         35 1.001751 1.001051
#> 7          7         42 1.002102 1.001261
#> 8          8         49 1.002453 1.001471
#> 9          9         56 1.002804 1.001681
#> 10        10         63 1.003155 1.001892
#> 11        11         70 1.003506 1.002102
#> 12        12         77 1.003857 1.002313
#> 13        13         84 1.004209 1.002523
#> 14        14         91 1.004560 1.002734
#> 15        15         98 1.004912 1.002944
#> 16        16        105 1.005264 1.003155
#> 17        17        112 1.005616 1.003366
#> 18        18        119 1.005968 1.003576
#> 19        19        126 1.006320 1.003787
#> 20        20        133 1.006672 1.003998
#> 21        21        140 1.007024 1.004209
#> 22        22        147 1.007377 1.004420
#> 23        23        154 1.007730 1.004631
#> 24        24        161 1.008082 1.004842
#> 25        25        168 1.008435 1.005053
#> 26        26        175 1.008788 1.005264
#> 27        27        182 1.009141 1.005475
#> 28        28        189 1.009495 1.005686
#> 29        29        196 1.009848 1.005897
#> 30        30        203 1.010201 1.006108
#> 31        31        210 1.010555 1.006320
#> 32        32        217 1.010909 1.006531
#> 33        33        224 1.011263 1.006743
#> 34        34        231 1.011617 1.006954
#> 35        35        238 1.011971 1.007165
#> 36        36        245 1.012325 1.007377
#> 37        37        252 1.012679 1.007589
#> 38        38        259 1.013034 1.007800
#> 39        39        266 1.013389 1.008012
#> 40        40        273 1.013743 1.008224
#> 41        41        280 1.014098 1.008435
#> 42        42        287 1.014453 1.008647
#> 43        43        294 1.014808 1.008859
#> 44        44        301 1.015163 1.009071
#> 45        45        308 1.015519 1.009283
#> 46        46        315 1.015874 1.009495
#> 47        47        322 1.016230 1.009707
#> 48        48        329 1.016586 1.009919
#> 49        49        336 1.016941 1.010131
#> 50        50        343 1.017297 1.010343
#> 51        51        350 1.017654 1.010555
#> 52        52        357 1.018010 1.010767
#> 53        53        364 1.018366 1.010980
#> 54        54        371 1.018723 1.011192
#> 55        55        378 1.019079 1.011404
#> 56        56        385 1.019436 1.011617
#> 57        57        392 1.019793 1.011829
#> 58        58        399 1.020150 1.012042
#> 59        59        406 1.020507 1.012254
#> 60        60        413 1.020864 1.012467
#> 61        61        420 1.021222 1.012680
#> 62        62        427 1.021579 1.012892
#> 63        63        434 1.021937 1.013105
#> 64        64        441 1.022294 1.013318
#> 65        65        448 1.022652 1.013531
#> 66        66        455 1.023010 1.013743
#> 67        67        462 1.023368 1.013956
#> 68        68        469 1.023727 1.014169
#> 69        69        476 1.024085 1.014382
#> 70        70        483 1.024443 1.014595
#> 71        71        490 1.024802 1.014808
#> 72        72        497 1.025161 1.015021
#> 73        73        504 1.025520 1.015235
#> 74        74        511 1.025879 1.015448
#> 75        75        518 1.026238 1.015661
#> 76        76        525 1.026597 1.015874
#> 77        77        532 1.026956 1.016088
#> 78        78        539 1.027316 1.016301
#> 79        79        546 1.027675 1.016515
#> 80        80        553 1.028035 1.016728
#> 81        81        560 1.028395 1.016942
#> 82        82        567 1.028755 1.017155
#> 83        83        574 1.029115 1.017369
#> 84        84        581 1.029475 1.017583
#> 85        85        588 1.029836 1.017796
#> 86        86        595 1.030196 1.018010
#> 87        87        602 1.030557 1.018224
#> 88        88        609 1.030918 1.018438
#> 89        89        616 1.031278 1.018652
#> 90        90        623 1.031639 1.018865
#> 91        91        630 1.032001 1.019079
#> 92        92        637 1.032362 1.019293
#> 93        93        644 1.032723 1.019508
#> 94        94        651 1.033085 1.019722
#> 95        95        658 1.033446 1.019936
#> 96        96        665 1.033808 1.020150
#> 97        97        672 1.034170 1.020364
#> 98        98        679 1.034532 1.020579
#> 99        99        686 1.034894 1.020793
#> 100      100        693 1.035256 1.021007
#> 101      101        700 1.035619 1.021222
#> 102      102        707 1.035981 1.021436
#> 103      103        714 1.036344 1.021651
#> 104      104        721 1.036707 1.021865
#> 105      105        728 1.037070 1.022080
#> 106      106        735 1.037433 1.022295
#> 107      107        742 1.037796 1.022509
#> 108      108        749 1.038159 1.022724
#> 109      109        756 1.038523 1.022939
#> 110      110        763 1.038886 1.023154
#> 111      111        770 1.039250 1.023369
#> 112      112        777 1.039614 1.023583
#> 113      113        784 1.039977 1.023798
#> 114      114        791 1.040341 1.024013
#> 115      115        798 1.040706 1.024228
#> 116      116        805 1.041070 1.024444
#> 117      117        812 1.041434 1.024659
#> 118      118        819 1.041799 1.024874
#> 119      119        826 1.042164 1.025089
#> 120      120        833 1.042528 1.025304