Randomly samples rows from a matrix or data frame containing MCMC posterior samples. Useful for generating parameter sets to use in posterior predictive simulations or scenario analyses.
Value
A matrix of dimension num_samples
× ncol(mcmc_results)
, containing randomly selected parameter sets.
Examples
# Simulate MCMC posterior with 100 samples and 3 parameters
posterior_samples <- matrix(rnorm(300), nrow = 100, ncol = 3)
colnames(posterior_samples) <- c("alpha", "beta", "gamma")
# Draw 10 random samples from the MCMC results
sampled <- sample_mcmc_steps(posterior_samples, 10)
print(sampled)
#> alpha beta gamma
#> [1,] -0.48458953 1.05221968 -2.53508347
#> [2,] -0.41346658 0.03240079 -0.42658891
#> [3,] 1.77704370 -0.43289519 -0.84285578
#> [4,] -1.53788648 -0.02874932 -0.70066975
#> [5,] 0.03022722 -1.95932664 0.05495264
#> [6,] -0.99924986 -0.61560579 1.53916993
#> [7,] -0.89895901 0.40647951 -1.12716761
#> [8,] 1.82762766 1.36502319 0.38494920
#> [9,] -0.25127278 -2.45427723 -0.31402132
#> [10,] -0.32354468 1.47217859 -1.17577589