Returns a data frame summarizing the details of the specified priors, including initial values, bounds, and the functional form of the prior distribution.
Arguments
- param_inputs
A named list of base parameter values. Used if
priors
is not supplied.- proposal_matrix
Covariance matrix used in proposal distribution. Required if
priors
is NULL.- params_to_estimate
A character vector specifying which parameters' priors should be viewed.
- priors
Optional list of priors. If
NULL
, the function callsinitialize_priors()
to generate defaults.
Value
A data frame with one row per parameter and the following columns:
- Name
The parameter name.
- Initial
The initial value used in inference.
- Min
The lower bound of the prior.
- Max
The upper bound of the prior.
- Description
A textual representation of the prior function.
Examples
# Define dummy prior functions
dummy_prior <- function(p) dnorm(p, mean = 0, sd = 1, log = TRUE)
# Create a minimal list of priors matching the expected structure
dummy_priors <- list(
a_R = list(name = "a_R", initial = 0.1, min = -2, max = 2, prior = dummy_prior),
b_R = list(name = "b_R", initial = 1.5, min = 0, max = 3, prior = dummy_prior),
qR = list(name = "qR", initial = 0.01, min = 0, max = 1, prior = dummy_prior),
z = list(name = "z", initial = 0.2, min = 0, max = 1, prior = dummy_prior),
eff_SMC = list(name = "eff_SMC", initial = 0.5, min = 0, max = 1, prior = dummy_prior),
phi = list(name = "phi", initial = 0.3, min = -1, max = 1, prior = dummy_prior),
size = list(name = "size", initial = 5, min = 0.01, max = 20, prior = dummy_prior)
)
# View priors for a subset of parameters using a supplied list
view_priors(
param_inputs = NULL,
proposal_matrix = NULL,
params_to_estimate = c("a_R", "b_R", "qR", "z", "eff_SMC", "phi", "size"),
priors = dummy_priors
)
#> Name Initial Min Max
#> a_R a_R 0.10 -2.00 2
#> b_R b_R 1.50 0.00 3
#> qR qR 0.01 0.00 1
#> z z 0.20 0.00 1
#> eff_SMC eff_SMC 0.50 0.00 1
#> phi phi 0.30 -1.00 1
#> size size 5.00 0.01 20
#> Description
#> a_R function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> b_R function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> qR function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> z function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> eff_SMC function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> phi function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)
#> size function (p) dnorm(p, mean = 0, sd = 1, log = TRUE)