
Create a scenario 2 by modifying an existing scenario 1 and determine attributable health impacts in it
Source:R/attribute_mod.R
attribute_mod.RdThis function assesses the attributable health impacts in a new scenario 2 which is obtained by modifying an existing scenario 1. Supply an existing attribute output and specify how scenario 1 should be modified to create scenario 2.
Usage
attribute_mod(
output_attribute,
erf_shape = NULL,
rr_central = NULL,
rr_lower = NULL,
rr_upper = NULL,
rr_increment = NULL,
erf_eq_central = NULL,
erf_eq_lower = NULL,
erf_eq_upper = NULL,
exp_central = NULL,
exp_lower = NULL,
exp_upper = NULL,
prop_pop_exp = NULL,
pop_exp = NULL,
cutoff_central = NULL,
cutoff_lower = NULL,
cutoff_upper = NULL,
bhd_central = NULL,
bhd_lower = NULL,
bhd_upper = NULL,
geo_id_micro = NULL,
geo_id_macro = NULL,
age_group = NULL,
sex = NULL,
population = NULL,
info = NULL,
min_age = NULL,
max_age = NULL,
approach_exposure = NULL,
approach_newborns = NULL,
year_of_analysis = NULL
)Arguments
- output_attribute
Listcontaining the output of the function attribute() for scenario 1.- erf_shape
String valuespecifying the exposure-response function shape to be assumed. Options (no default):"linear",log_linear","linear_log","log_log". Only applicable in RR pathways; not required iferf_eq_...argument(s) already specified.- rr_central, rr_lower, rr_upper
Numeric valuespecifying the central relative risk estimate and (optionally) the corresponding lower and upper 95% confidence interval bounds. Only applicable in RR pathways; not required iferf_eq_...argument(s) already specified.- rr_increment
Numeric valuespecifying the exposure increment for which the provided relative risk is valid. See Details for more info. Only applicable in RR pathways; not required iferf_eq_...argument(s) already specified.- erf_eq_central, erf_eq_lower, erf_eq_upper
Stringorfunctionspecifying the exposure-response function and (optionally) the corresponding lower and upper 95% confidence interval functions. See Details for more info. Required in AR pathways; in RR pathways required only ifrr_...argument(s) not specified.- exp_central, exp_lower, exp_upper
Numeric valueornumeric vectorspecifying the exposure level(s) to the environmental stressor and (optionally) the corresponding lower and upper bound of the 95% confidence interval. See Details for more info.- prop_pop_exp
Numeric valueornumeric vectorspecifying the population fraction(s) exposed for each exposure (category). Default: 1. See Details for more info. Only applicable in RR pathways.- pop_exp
Numeric vectorspecifying the absolute size of the population(s) exposed to each exposure category. See Details for more info. Only applicable in AR pathways; always required.- cutoff_central, cutoff_lower, cutoff_upper
Numeric valuespecifying the exposure cut-off value and (optionally) the corresponding lower and upper 95% confidence interval bounds. Default: 0. See Details for more info.- bhd_central, bhd_lower, bhd_upper
Numeric valueornumeric vectorproviding the baseline health data of the health outcome of interest in the study population and (optionally) the corresponding lower bound and the upper 95% confidence interval bounds. See Details for more info. Only applicable in RR pathways; always required.- geo_id_micro, geo_id_macro
Numeric vectororstring vectorproviding unique IDs of the geographic area considered in the assessment (geo_id_micro) and (optionally) providing higher-level IDs (geo_id_macro) to aggregate the geographic areas at. See Details for more info. Only applicable in assessments with multiple geographic units.- age_group
Numeric vectororstring vectorproviding the age groups considered in the assessment. In case of use inattribute_lifetable)(), it must be anumericand contain single year age groups. See Details for more info. Optional argument forattribute_health(); needed forattribute_lifetable().- sex
Numeric vectororstring vectorspecifying the sex of the groups considered in the assessment.Optional argument.- population
Numeric vectorFor attribute_lifetable(), it is an obligatory argument specifying the mid-year populations per age (i.e. age group size = 1 year) for the (first) year of analysis.For attribute_health()it is an optional argument which specifies the population used to calculate attributable impacts rate per 100 000 population. See Details for more info.- info
String,data frameortibbleproviding information about the assessment. See Details for more info. Optional argument.- min_age, max_age
Numberic valuespecifying the minimum and maximum age for which the exposure will affect the exposed population, respectively. Defaultmin_age: 30. Defaultmax_age: none. See Details for more info.- approach_exposure
Stringspecifying whether exposure is constant or only in one year. Options:"single_year"(default),"constant".- approach_newborns
Stringspecifying whether newborns are to be considered in the years after the year of analysis or not. Options:"without_newborns"(default),"with_newborns". See Details for more info.- year_of_analysis
Numeric valueproviding the first with exposure to the environmental stressor.
Value
This function returns a list containing:
1) health_main (tibble) containing the main results;
impact(numericcolumn) attributable health burden/impactpop_fraction(numericcolumn) population attributable fraction; only applicable in relative risk assessmentsAnd many more
2) health_detailed (list) containing detailed (and interim) results.
results_raw(tibble) containing results for each combination of input uncertaintyresults_by_geo_id_micro(tibble) containing results for each geographic unit under analysis (specified ingeo_id_microargument)input_table(tibble) containing the inputs to each relevant argumentinput_args(list) containing all the argument inputs used in the background
Examples
# Goal: adjust an existing healthiar scenario and determine the health
# impacts in the modified scenario
## First create a scenario to be modified
scenario_A <- attribute_health(
exp_central = 8.85, # EXPOSURE 1
cutoff_central = 5,
bhd_central = 25000,
approach_risk = "relative_risk",
erf_shape = "log_linear",
rr_central = 1.118,
rr_increment = 10
)
scenario_A$health_main$impact # Attributable impact in scenario A
#> [1] 1050.86
## Modify scenario (adjust exposure value)
scenario_B <- attribute_mod(
output_attribute = scenario_A,
exp_central = 6 # EXPOSURE 2
)
scenario_B$health_main$impact # Attributable impact in scenario B
#> [1] 277.304