This function aggregates health impacts from multiple exposures to environmental stressors.
Usage
multiexpose(
output_attribute_exp_1,
output_attribute_exp_2,
exp_name_1,
exp_name_2,
approach_multiexposure = "additive"
)Arguments
- output_attribute_exp_1, output_attribute_exp_2
Output of attribute() for exposure 1 and 2, respectively. Baseline health data and population must be identical in outputs 1 and 2.
- exp_name_1, exp_name_2
Stringreferring to the name of the environmental exposures 1 and 2- approach_multiexposure
Stringspecifying the multiple exposures approach to be used in the assessment. Options: "additive" (default), "multiplicative" or "combined".
Value
This function returns a list containing:
1) health_main (tibble) containing the main results;
impact(numericcolumn) attributable health burden/impactpop_fraction(numericcolumn) population attributable fraction; only applicable in relative risk assessmentsAnd many more
2) health_detailed (list) containing detailed (and interim) results.
results_raw(tibble) containing results for each combination of input uncertaintyresults_by_geo_id_micro(tibble) containing results for each geographic unit under analysis (specified ingeo_id_microargument)input_table(tibble) containing the inputs to each relevant argumentinput_args(list) containing all the argument inputs used in the background
Details
Sources
For more information on the additive and combined approaches see Steenland & Armstrong 2006 (https://doi.org/10.1097/01.ede.0000229155.05644.43).
For more information on the multiplicative approach see Jerrett et al. 2013 (https://doi.org/10.1164/rccm.201303-0609OC).
Examples
# Goal: determine aggregated health impacts from multiple exposures
# Step 1: create assessment with exposure 1
output_attribute_exp_1 <- attribute_health(
erf_shape = "log_linear",
rr_central = 1.369,
rr_increment = 10,
exp_central = 8.85,
cutoff_central = 5,
bhd_central = 30747
)
output_attribute_exp_1$health_main$impact
#> [1] 3501.962
# Step 2: create assessment with exposure 2
output_attribute_exp_2 <- attribute_mod(
output_attribute = output_attribute_exp_1,
exp_central = 10.9,
rr_central = 1.031
)
output_attribute_exp_2$health_main$impact
#> [1] 548.8641
# Step 3: aggregate impacts of the two assessments
results <- multiexpose(
output_attribute_exp_1 = output_attribute_exp_1,
output_attribute_exp_2 = output_attribute_exp_2,
exp_name_1 = "pm2.5",
exp_name_2 = "no2",
approach_multiexposure = "multiplicative"
)
results$health_main$impact
#> [1] 3988.312
